
User-Guide

Projekt
”
Hypothetical Machinecode - Assembler and

Simulator“

Projektgruppe: Markus Hennecke
Phasenverantwortlich: Markus Hennecke

14th September 2003

1



Contents

1 General Description 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Program Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Simulated Hardware 2
2.1 Register and Wordwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Description of the Hypothetical Machinecode 3
3.1 Instruction Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.1 Stackinstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2.2 Indexinstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.4 Instructiontable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 The Assembler “as” 7
4.1 Command Line Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Input Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 META Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Listfile Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.5 Objectfile Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 The GUI 8
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Command Line Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Menu Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3.1 File Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3.2 Edit Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3.3 Assembler Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3.4 Help Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.4 Edit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.5 Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 The Interpreter 13
6.1 Command Line Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Objectfile Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Builtin I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.3.1 Example - Output to the console . . . . . . . . . . . . . . . . . . . . . . . . 13

1 General Description

1.1 Introduction

1.2 Program Parts

2 The Simulated Hardware

2.1 Register and Wordwidth

The simulated Processor has got 16 bit Registers. There are five Registers: The accumulator, the
helpregister, the indexregister, the instruction pointer (short IP) and the stack pointer (SP). Only

2



the accumulator can be used for arithmetic operations. The width of the addresses used is 16 bit
too.

2.2 Memory Organization

Every memory cell holds a 16 bit word. This is different to common systems like personal comput-
ers. There are 64k words addressable making it 128kb. ASCII values are stored as 16 bit values
as well, so no 8 bit access methods are known to the processor.

2.3 Input / Output

I/O is memory mapped. Reading or writing to a address reserved to I/O operations results in
accessing the device attached to that address. See section 6.3 for further information.

3 Description of the Hypothetical Machinecode

3.1 Instruction Structure

Value / Address

1115 712 10 8 0

MODDOpcode

Figure 1: Structure of Instructions

OP-Code The code of an operation. See section 3.2.

D Mark for double-word instructions. The data is in the next word if this bit is set. An Exception
are the operations on the stack where this bit is a part of the modification part.

MOD Modification part. With these bits addressing modes, stack- and indexoperations are
selected.

Address / Value In this part the data belonging to the operation is stored.

3.2 Instructions

dual Description of operation Mnemonic

0000 Halt, end of program HLT
0001 Load accu LAD
0010 Store accu to address SPI
0011 Add operand to accu ADD
0100 Subtract operand from accu SUB
0101 Multiply accu with operand MUL
0110 Divide accu with operand DIV
0111 Unconditional jump JMP
1000 Jump if accu is equal zero JEZ
1001 Jump if accu is greater or equal zero JGZ
1010 Jump if accu is lower zero JLZ
1011 Swap accu and help register SWAP
1100 Stackinstructions, see section 3.2.1 *
1101 Jump to subroutine JSR
1110 Return from subroutine RET
1111 Indexinstruction, see section Indexinstructions *

3



HLT Ends the program execution. Register and memory values are not changed. After setting
the instruction pointer to another address the programm execution can be resumed.

LAD Loads the accumulator with the operand or the value described by the addressing mode.

SPI Stores the accumulator to the memory address described by the addressing mode.

ADD Adds the operand described by the addressing mode to the accumulator. This operation
obeys signs. There is no information if an overflow occured.

SUB Subtracts the operand described by the addressing mode from the accumulator. This op-
eration obeys signs. There is no information if an overflow occured.

MUL Multiplies the operand with the accumulator and stores the result in the accu. This
operation obeys signs. There is no information if an overflow occured.

DIV Divides the accumulator with the operand and stores the result in the accu. This is an
integer division and the remainder is stored in the SWAP Register. This operation obeys
signs. There is no information if an overflow occured.

JMP Jumps to the given address.

JEZ Jumps to the given address if the accumulator is equal zero.

JGZ Jumps to the given address if the accumulator is greater or equal zero.

JLZ Jumps to the given address if the accumulator is lower zero.

SWAP Swaps the accumulator and the help register.

JSR Jumps to the given address. The address of the following instruction is pushed on the stack.

RET Pops an address from the stack and continues the program execution at that address.

The arithmetic instructions always hold their result in the accumulator.

3.2.1 Stackinstructions

Following is a list of stack operations. These instructions are differentiated by the double-word-
and the MOD-bits. Those operations not defined by these bits are illegal instructions. These
instructions can be used for further extensions to the instruction set. Because of the double-word
bit used to differentiat instructions there are no short versions of the stack instructions.

D+MOD Description Mnemonic

0001 Push the accumulator on the stack PUSHAC
0010 Pop a value from the stack and store POPAC

it in the accumulator
0011 Add the two values pushed last on the stack ADDST
0100 Subtract the two values pushed last on the stack SUBST
0101 Multiply the two values pushed last on the stack MULST
0110 Divide the two values pushed last on the stack DIVST
0111 Store accumulator to the stack pointer LSA
1000 Load accumulator with the address the stack LDS

pointer holds
1011 Push operand on the stack PUSH
1100 Pop operand from stack POP

4



Arithmetic operations on the stack Arithemtic operations using the stack for parameters
are executed in the following order:

1. The last value pushed on the stack is the first operand.

2. The first value pushed on the stack is the second operand.

3. The operation is executed and the parameters are removed from the stack.

4. The result is pushed on the stack.

PUSHAC The accumulator is pushed on the stack. The stack pointer is decreased after the
value is stored.

POPAC The stack pointer is increased by one and the value at that address is stored to the
accumulator.

ADDST Adds the two last pushed elements on the stack. See the description of stack arithmetic

SUBST Subtracts the two last pushed elements on the stack. See the description of stack arith-
metic

MULST Multiplies the two last pushed elements on the stack. See the description of stack
arithmetic

DIVST Divides the two last pushed elements on the stack. See the description of stack arithmetic

LSA Transfers the value stored in the accumulator to the stack pointer.

LDS Transfers the address stored in the stack pointer to the accumulator.

PUSH Pushs a 16 bit value on the stack. Only direct addressing mode is possible with this
instruction.

POP Pops the top value from the stack and stores it to the specified address. Only direct
addressing mode is supported.

3.2.2 Indexinstructions

The following index instructions have the opcode 1111 and are selected via the MOD part. They
have no parameters with exception of the LDX instruction because all operate the index register
direct.

MOD Short Description Mnemonic

000 Load zero to the index register CLI
001 Transfer the accumulator to the index register LDI
010 Transfer the index register to the accumulator LIA
011 Increment the index register by one INK
100 Decrement the index register by one DEK
101 Illegal Opcode *
110 Illegal Opcode *
111 Load value from an absolute address LDX,@adresse

into the index register

CLI Load zero to the index register.

5



LDI Transfer the accumulator to the index register.

LIA Transfer the index register to the accumulator.

INK Increments the index register by one.

DEK Decrements the index register by one.

LDX Load value from an absolute address into the index register. Only the direct addressing
mode is possible. The instruction is always a double-word instruction.

3.2.3 Addressing Modes

Direct via Address Form: @address, MOD: 0xx.
The first bit of the MOD bits is zero. The remaining bits are the highest bits of the address.
A single-word instruction has a addressrange of 10 bits. In a double-word instruction the
remaining MOD bits are ignored.

Direct with Operator Form: #operator, MOD: 100.
Values from -128 to +127 are stored in a single-word instruction. For higher values a double-
word instruction is used. Those bits not belonging to the maximum addressing width of the
cpu are ignored.

Relative to the Instruction Pointer Form: address, MOD: 101
The address is relative to the instruction pointer. There are 8 bits usable for single-word
instructions (-128 to 127). For greater offsets a double-word instruction will be used. Die
Adresse wird relativ zum Those bits not belonging to the maximum addressing width of the
cpu are ignored.

Indirect Address Form: (address), MOD: 110.
The real address is found via the address given as a parameter. There are 8 bits usable for
single-word instructions (-128 to 127). For greater offsets a double-word instruction will be
used. Die Adresse wird relativ zum Those bits not belonging to the maximum addressing
width of the cpu are ignored.

Relative to the Indexregister Form: %address, MOD: 111.
The address is relative to the indexregister. There are 8 bits usable for single-word instruc-
tions (-128 to 127). For greater offsets a double-word instruction will be used. Die Adresse
wird relativ zum Those bits not belonging to the maximum addressing width of the cpu are
ignored.

6



3.2.4 Instructiontable

Mnemonic Dir.
Op.

Dir.
Add

r.

Rela
tiv

e

In
dir

ec
t

In
de

x
Mnemonic Dir.

Op.

Dir.
Adr

.

Rela
tiv

In
dir

ek
t

In
de

x

HLT - - - - - CLI - - - - -
LAD X X X X X LDI - - - - -
SPI - X X X X LIA - - - - -

ADD X X X X X INK - - - - -
SUB X X X X X DEK - - - - -
MUL X X X X X LDX - X - - -
DIV X X X X X PUSHAC - - - - -
JMP - X X X X POPAC - - - - -
JEZ - X X X X ADDST - - - - -
JGZ - X X X X SUBST - - - - -
JLZ - X X X X MULST - - - - -
JSR - X X X X DIVST - - - - -
RET - - - - - PUSH X - - - -
LSA - - - - - POP - X - - -
LDS - - - - - SWAP - - - - -

4 The Assembler “as”

4.1 Command Line Parameter

Commandline options for the assembler “as”:
as [options] sourcefile

-h Shows a list of available options with a short description.

-l Enables listfile generation. This is a general switch. If the NOLIST meta instruction is used the
listfile generation will be disabled. By default this filename of the listfile is derived from the
source filename by substituting a “.asm” postfix with “.lst”. If “.asm” is not the fileending
“.lst” is appended to the source filename.

-nl Disables listfile generation. Using this switch every occurence of LIST in the source is ignored.

-m number Sets the maximum passes done by the assembler. The default value is set to 99,
possible values are 2 to 99.

-o filename Sets the filename of the objectfile. By default this filename is derived from the source
filename by substituting a “.asm” postfix with “.obj”. If “.asm” is not the fileending “.obj”
is appended to the source filename.

Parts in brackets are optional.

4.2 Input Format

The assembler reads lines with the following structure:
[Label:] [Mnemonic [, Argument]] [; Comment]

Label A label starts with a character between “a” and “z”. The following characters can be
either lower- or uppercase or digits. The colon (“:”) is strictly required after the label.

Mnemonic A mnemonic is either a valid instruction or meta instruction. The characters in this
string have to be uppercase.

7



Argument The argument is separated from the mnemonic by a comma (“,”). See Addressing
Modes for the format. As parameters are allowed symbolic names (e.g. labels) or numbers.
Numbers are decimal only.

Comment The comment is started with a semicolon (“;”). Everything after this mark is ignored.

Every part in brackets is optional input.

4.3 META Instructions

The following instructions are defined to assign values to labels and to control listfile generation:

ORG Sets the instruction pointer to the absolute memory address. Following instructions are
assembles relative to this address.

LIST From this line on all instructions are written to the listfile. See Listfile Format for more
information.

NOLIST The following lines produce no output in the listfile.

PAGE Is listfile enabled a new page is started. (This instruction is without function as there are
too many printers around)

EQUIVALENT Short: EQU. Assigns a value to the label. Format: label EQU value

WORD Writes the following value to memory. Only single values are supported.

TEXT Writes the string as ASCII to memory. See memory organization for more information.

4.4 Listfile Format

Output to the listfile is printed in the following format:
Linenumber Address Bytecode Sourceline The bytecode is broken in 16 bit blocks, each

block written in 4 hex digits. If a line produces more than 2 blocks of bytecode only the first two
blocks are displayed. This is the case for the TEXT metainstruction.

4.5 Objectfile Format

The objectfile is written with the following scheme: Address: Bytecode ; Comment The
comment is a simplified readable description of the source line and optional. The bytecode is
broken in 16 bit blocks, each block written in 4 hex digits. There is no restriction in the number
of blocks containing the bytecode.

5 The GUI

5.1 Overview

The GUI consists of two parts. First the Editor which is invoked at program start. Second the
Debugger which can be invoked from the Editor or after the successful assembling of a sourcefile.

5.2 Command Line Parameter

The Program itself does not accept any command line parameters. In fact these are ignored.
The QT toolkit does accept command line parameters. See the QT documentation for further
information

8



5.3 Menu Entries

5.3.1 File Menu

New If in edit mode creates a new empty document. This menu entry is not available in debug
mode.

Open if in edit mode opens an existing document. In debug mode it opens an existing object
file.

Save Only available in edit mode. Saves the current document. If the document is not associated
to a filename the user is asked for a filename.

Save As Only available in edit mode. Saves the current document, the user is asked for a filename.

Quit Exits the program.

5.3.2 Edit Menu

Only available in edit mode.

Undo Undos the last opereration

Redo Redos the last undone operation.

Cut Cuts the selected text.

Copy Copies the selected text.

Paste Pastes a previously cutted or copied text.

Find Opens a dialogbox where the text to find can be typed in.

Figure 2: Find Dialogbox

5.3.3 Assembler Menu

Only available in edit mode.

Switch to Debugger Switches to the debugger.

Assemble Assembles the current file. If it is not saved it is saved now. A dialogbox with the
results of the assemble is displayed and if no errors were found the user is asked to switch
to the debugger.

Options Opens a dialogbox with the available options of the program.

Path to the as binary Sets the path to the assembler. The Filebrowser button can be
used to choose it with a file dialog.

Generate Listfile If checked listfile generation is allowed.
Max. Number of Passes Sets the maximal number of passes.

9



Figure 3: Options

5.3.4 Help Menu

Contents Opens the helpwindow.

Index Opens the helpwindow. Starting at the indexpage.

About Shows an about dialogbox.

10



5.4 Edit Mode

Figure 4: The Editor

11



5.5 Debug Mode

Figure 5: The Debugger

In debug mode there are several elements on the screen.
In the upper left corner is a listing with disassembled instructions around the instruction

pointer.
To the right of this the CPU registers are shown. These can be switched from signed to

unsigned and from hex to decimal display. The values are editable, the edited value is taken after
the user pressed return.

Far to the right are the buttons located to control the debugger. These are similar to the menu
entries of the Debug menu.

Step Steps the next instruction.

Next Steps over the next instruction.

Run Runs the program from the current position.

Stop Stops the execution of a running program.

Add Breakpoint Adds a breakpoint. The Breakpoint is shown in the list below these buttons.
The user is able to add a comment to each added breakpoint.

12



Delete Breakpoint Removes a selected breakpoint from the list.

To the lower left is a listing with a representation of the current memory. The memory is
displayed in maximal 16k, dividing the available memory into 4 equal sized parts. If a memory
cell is selected it can be edited similar to the CPU Registers.

In the lower Right is a representation of the memory located above the current stack pointer.
The last 20 positions are shown in this view. This is read only.

6 The Interpreter

The interpreter is a standalone program with no gui.

6.1 Command Line Parameter

Commandline options for the interpreter “hasi-nogui”:
hasi-nogui [options] objectfile

-h Shows a list of available options with a short description.

-d Adds debug output to the console by printing out the registers after each instruction.

-s number Sets the start address. This defaults to 0.

Parts in brackets are optional. These parameters are not handled in the gui version.

6.2 Objectfile Format

See Objectfile Format in the description of the assembler “as”.

6.3 Builtin I/O

6.3.1 Example - Output to the console

An example class is included into the project. This class handles output to the console by printing
out everything written to address 49152. The declaration can be used for further extensions:

#include "Memory.hpp"

namespace Interpreter {

class IOTtyOut : public Memory
{
public:
// Con and Destructor:
IOTtyOut(const unsigned int start = 0);
IOTtyOut(const IOTtyOut &);
virtual ~IOTtyOut();

// The read and write functions reimplemented for IOTtyOut
virtual bool write(const unsigned int addr, const short val);
virtual bool read(const unsigned int addr, short &) const;

};
}

The implementation is very simple:

13



#include "IOTtyOut.hpp"

namespace Interpreter {

// IOTtyOut::IOTtyOut(int)
// Initializes the IOTtyOut. The content of the IOTtyOut is undefined.
IOTtyOut::IOTtyOut(const unsigned int start)
: Memory(1, start)

{ }

// IOTtyOut::IOTtyOut(const IOTtyOut &)
// Copies the memory. The content is copied 1:1. If there was no memory
// in the argument new memory will be created.
IOTtyOut::IOTtyOut(const IOTtyOut &m)
: Memory(1, m.start)

{ }

// IOTtyOut::~IOTtyOut()
// Frees the IOTtyOut.
IOTtyOut::~IOTtyOut()
{ }

// bool IOTtyOut::write(const unsigned int, const short)
// Writes a ASCII char to a tty. This is only done if the address is equal
// to start. True or false will be returned according to the success of
// the operation.
bool IOTtyOut::write(const unsigned int addr, const short val)
{
if (addr == start) {
std::cout << static_cast<char>((val & 0xff));
return true;

}
return false;

}

// bool IOTtyOut::read(const unsigned int, short &)
// False will be returned and the value is set to -1 (0xffff).
bool IOTtyOut::read(const unsigned int addr, short &val) const
{
val = -1; // don’t produce warnings on unused vars...
return false;

}
}

Such a simple class is really easy to implement.

14


	General Description
	Introduction
	Program Parts

	The Simulated Hardware
	Register and Wordwidth
	Memory Organization
	Input / Output

	Description of the Hypothetical Machinecode
	Instruction Structure
	Instructions
	Stackinstructions
	Indexinstructions
	Addressing Modes
	Instructiontable


	The Assembler ``as''
	Command Line Parameter
	Input Format
	META Instructions
	Listfile Format
	Objectfile Format

	The GUI
	Overview
	Command Line Parameter
	Menu Entries
	File Menu
	Edit Menu
	Assembler Menu
	Help Menu

	Edit Mode
	Debug Mode

	The Interpreter
	Command Line Parameter
	Objectfile Format
	Builtin I/O
	Example - Output to the console



